
Machine Learning Final Project Report
游家權 R10942152    黃義翔 B08502063    藍寍 B07705055

Preprocessing
Evaluation:

To evaluate the performance of numerous data processing methods, we decided to use
sklearn.linear_model.LogisticRegression[1](Figure 1) to evaluate our performance, and choose the
best method based on 10-fold cross validation scores.

Imputation and Encoding:

First, we can fill the missing data in “Latitude” and “Longitude” features with “Lat Long” feature,
which reduces nearly half of the missing data in “Latitude” and “Longitude”. Second, through
evaluation, we select sklearn.impute.IterativeImputer[2] to fill in the rest of the missing data. Then,
for categorical features, the data is rounded to the nearest category, and all negative values in the
rest of the data are assigned to 0. Third, for categorical features, we can use one-hot or frequency
encoding[3] to encode our data. However, location features like “City” or “Zip Code” have more
than a thousand categories. It will cause curse of dimensionality[4] if we use one-hot to encode
those two features, and the data would be nearly identical if we use frequency encoding. To reduce
the number of categories, we use k-means clustering[5] to divide customers into k groups based
on latitude and longitude of customer’s residence(Figure 2), and choose k by the validation score.
All combination of encoding methods and the corresponding validation scores are shown below:

combination of encoding
methods

biggest 10-fold cross validation f1 score(k
from 1 to 20)

public score private score

drop all categorical features and
location feature

0.31341233977868066 0.28595 0.33778

one-hot encoding(categorical
features)+drop location feature

0.3120524431026143 0.29167 0.35013

frequency encoding(categorical
features)+drop location feature

0.3139292727558664 0.27942 0.33883

one-hot encoding(categorical
features and location feature)

0.33575388754240243(k=13) 0.30465 0.35114

frequency encoding(categorical
features and location feature)

0.32400913594478636(k=5) 0.29403 0.31988

one-hot encoding(categorical
features)+frequency
encoding(location feature)

0.3190769736738338(k=5) 0.30186 0.34684

frequency encoding(categorical
features)+one-hot
encoding(location feature)

0.3293012906330455(k=13) 0.29600 0.33790



training:
After deciding all preprocessing methods, we can decide C in logistic regression model. The

result is listed below:

C 10-fold cross validation f1 score public score private score

0.001 0.31234327145586177 0.26407 0.32724

0.01 0.3377813467620546 0.29793 0.33939

0.02 0.3404127998900565 0.29002 0.35276

0.03 0.3413112734679104 0.29738 0.35071

0.04 0.3379492944313618 0.29918 0.35511

0.1 0.3372012612649843 0.30502 0.35235

1 0.33575388754240243 0.30465 0.35114

Permutation Feature importance[6](top 5):



Experiment of MLP(Multi-Layer Perceptron)
We attempt to use MLP to solve this multi-class problem. We design our network through a

series of ablation studies, trying to choose the best or the most reasonable setting possible.
Adam[8] is used as our optimizer, and Cross Entropy Loss is used to update our network in the
experiments below. All models below are trained with 50 epochs.

Structure of our MLP model

Network Design:

Nerwork Structure Learning Rate Batch Size Imbalance
Techniques

Public Score Private Score

(43, 43, 43, 43, 6) 0.0005 4 - 0.33232 0.33008

(43, 43, 20, 10, 6) 0.0005 4 - 0.30767 0.32669

(43, 6) 0.0005 4 - 0.29928 0.33471
We’ve tested server possible network structures, and it turns out (43, 43, 43, 43, 6) with 5 fully

connected layers have the best performance in general. Although the single layer network (43, 6)
has the best f1 score in the private dataset. We believe it’s just pure luck, since private dataset is
just 50% of the public data.

Batch Size:

Nerwork Structure Learning Rate Batch Size Imbalance
Techniques

Public Score Private Score

(43, 43, 43, 43, 6) 0.0005 4 - 0.33232 0.33008

(43, 43, 43, 43, 6) 0.0005 8 - 0.32739 0.31994

(43, 43, 43, 43, 6) 0.0005 32 - 0.34978 0.30710

Batch size influences network performance greatly. Small batch size allows the network to
update more frequently and randomly, while big batch size lets it update more stable. In this
experiment, we choose to use a smaller batch size in our model, because we believe randomly
updating will help the network tackle the imbalance problem. It allows minor classes to “dominate”
update direction in some lucky draws. We observed this learning behavior by monitoring minor
classes f1 scores respectively.

Deal with Imbalance Dataset:
We used two different techniques to deal with the imbalance dataset in the MLP. First, we used

a uniform sampler[9] to sample training data with high probability if it’s in a minor class. Secondly,
we used a weighted loss function[10] to make the network pay more attention to the minor class
loss.

Nerwork Structure Learning
Rate

Batch
Size

Imbalance Techniques Public Score Private Score



(43, 43, 43, 43, 6) 0.0005 4 - 0.33232 0.33008

(43, 43, 43, 43, 6) 0.0005 4 Weighted Loss 0.35439 0.38497

(43, 43, 43, 43, 6) 0.0005 4 Uniform Sampler 0.29749 0.26130

Our experiment results show weighted loss has a positive impact on our model training process.
On the other hand, the uniform sampler doesn’t help our model at all. We think it’s because the
uniform sampler changes the data distribution inside a batch, making our network assume the
input data will always be uniform distribution, which is definitely not true.

Visualize Features in MLP
We use TSNE[11] to reduce the dimension of features and print them on 2D plots for the

purpose of visualizing features in the network. As shown below, “No churn” is colored in red, while
“Competitor”, “Dissatisfaction”, “attitude”, “Price”, “Other” are colored in blue, green, purple,
orange, and yellow. As we can see, raw features are inseparable at first; however, after going
through MLP layer by layer, we can see that the same label data points gradually become a
cluster, making them easier to be classified by a simple decision boundary. These visualization
results illustrate the ability to classify that MLP learned from training dataset.

Raw Feature 1st layer output 2nd layer output

3th layer output 4th layer output Final layer output



Experiment of AdaBoost

Structure of AdaBoost model

Design:
The Adaptive Boosting algorithm can combine several weak classifiers with weighted voters, into

a stronger classifier, and hardly needs parameter adjustments. Furthermore, thanks to the python
scikit-learn’s ensemble.AdaBoostClassifier[12], the Adaptive Boosting algorithm can be
conveniently developed, it might be a good choice for a beginner.

Experiments:

n_estimators base_estimator Private
Score

Public
Score

n_estimators base_estimator Private
Score

Public
Score

50 None 0.30209 0.28602 50 Logistic
Regression

0.30230 0.27816

200 None 0.25806 0.29092 200 Logistic
Regression

0.31661 0.30682

500 None 0.28181 0.26410 500 Logistic
Regression

0.32664 0.29255

The parameters that have been experimented are the n_estimators and the base_estimator,
which are the maximum number of estimators at which terminated, and the boosted ensemble was
built from. If the ‘weak’ classifier base is stronger than default, the result would be better. Moreover,
the maximum number of estimators seems not proportional to the outcome result. It is because if
the estimators are many, the possibility of overfitting might occur. Although the Adaptive Boosting
algorithm also states that it seldom occurs overfitting, if the estimator number is outrageously
increased, the outcome result would probably show the phenomenon of overfitting.
Permutation Feature importance(top 5):

Conclusion
Comparison of three different model:



Efficiency: total training time
Scalability: (total training time with doubled data)/(original training time)

Method Efficiency Scalability interpretability Overfitting Number of
Hyperparam

eters

private
F1 score

Logistic
Regression

Good
(0.849s)

Good
(1.53)

Good Hard Few 0.35071

Multi-Layer
Perceptron

Bad
(46.18s)

Middle
(1.73)

Bad Easy Many 0.38497

AdaBoost Good
(1.32s)

Good
(1.14)

Good Medium Medium 0.32664

In terms of efficiency, logistic regression definitely has the shortest training time, while MLP has
the longest since it needs to update multiple steps. Logistic regression is very easy to understand
and explain, but MLP and AdaBoost are much more sophisticated. MLP is very easy to overfit,
especially when training data is not rich enough, while Logistic regression and AdaBoost are less
likely to happen. Logistic regression has only one hyperparameter to tune, making it the easiest
model to tune up, while MLP and AdaBoost have lots more hyperparameters needed to deal with.
Final selection of models:

Though MLP achieved high score on the private leaderboard, the hyperparameters of MLP are
very hard to tune, and the lack of cross validation caused by long training time makes us hard to
detect overfit. On the contrary, though logistic regression didn’t perform well on the public
leaderboard, cross validation scores give us promising results, and the logistic regression indeed
performs well on private leaderboard. Thus, we decided to choose logistic regression as our final
selection of models.
Pros and Cons of Logistic Regression:
Pros:
Easy to implement
Not easy to overfit
Very few parameters needed to be tuned
Short training time
Cons:
May underfitting
Less model flexibility
Cannot easily achieve high score on test set

Students 游家權 R10942152 黃義翔 B08502063 藍寍 B07705055

Workloads MLP Preprocessing, logistic regression AdaBoost

Reference:
[1]https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
[2]https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
[3]https://towardsdatascience.com/all-about-categorical-variable-encoding-305f3361fd02
[4]https://en.wikipedia.org/wiki/Curse_of_dimensionality
[5]https://en.wikipedia.org/wiki/K-means_clustering
[6]https://scikit-learn.org/stable/modules/permutation_importance.html
[7] Build MLP with pytorch: https://www.itread01.com/content/1542450988.html
[8] Adam Optimizer: https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
[9] Uniform Sampler: https://androidkt.com/deal-with-an-imbalanced-dataset-using-weightedrandomsampler-in-pytorch/
[10] Weighted loss function:
https://discuss.pytorch.org/t/weights-in-weighted-loss-nn-crossentropyloss/69514/3
[11] TSNE: https://mortis.tech/2019/11/program_note/664/
[12]https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://towardsdatascience.com/all-about-categorical-variable-encoding-305f3361fd02
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/K-means_clustering
https://scikit-learn.org/stable/modules/permutation_importance.html
https://www.itread01.com/content/1542450988.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://androidkt.com/deal-with-an-imbalanced-dataset-using-weightedrandomsampler-in-pytorch/
https://discuss.pytorch.org/t/weights-in-weighted-loss-nn-crossentropyloss/69514/3
https://mortis.tech/2019/11/program_note/664/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

