Machine Learning Final Project Report
R R10942152 #F#E$) B08502063 E i B07705055

Preprocessing
Evaluation:
To evaluate the performance of numerous data processing methods, we decided to use
sklearn.linear_model.LogisticRegression[1](Figure 1) to evaluate our performance, and choose the
best method based on 10-fold cross validation scores.

#using logistic regession

from sklearn.linear_model import LogisticRegression

from sklearn.preprocessing import StandardScaler

from sklearn.pipeline import Pipeline

pipe= Pipeline([('scaler',StandardScaler()),('clf', LogisticRegression(,multi_class='ovr',class_weight='balanced'))])
scores = cross_val_score(pipe, X, y, cv=10,scoring=make_scorer(fl_score, average='macro'))

scores.mean()

Figura 1
Imputation and Encoding:

First, we can fill the missing data in “Latitude” and “Longitude” features with “Lat Long” feature,
which reduces nearly half of the missing data in “Latitude” and “Longitude”. Second, through
evaluation, we select sklearn.impute.lterativelmputer[2] to fill in the rest of the missing data. Then,
for categorical features, the data is rounded to the nearest category, and all negative values in the
rest of the data are assigned to 0. Third, for categorical features, we can use one-hot or frequency
encoding[3] to encode our data. However, location features like “City” or “Zip Code” have more
than a thousand categories. It will cause curse of dimensionality[4] if we use one-hot to encode
those two features, and the data would be nearly identical if we use frequency encoding. To reduce
the number of categories, we use k-means clustering[5] to divide customers into k groups based
on latitude and longitude of customer’s residence(Figure 2), and choose k by the validation score.
All combination of encoding methods and the corresponding validation scores are shown below:

combination of encoding biggest 10-fold cross validation f1 score(k public score private score
methods from 1 to 20)
drop all categorical features and 0.31341233977868066 0.28595 0.33778

location feature

one-hot encoding(categorical 0.3120524431026143 0.29167 0.35013
features)+drop location feature

frequency encoding(categorical 0.3139292727558664 0.27942 0.33883
features)+drop location feature

one-hot encoding(categorical 0.33575388754240243(k=13) 0.30465 0.35114
features and location feature)

frequency encoding(categorical 0.32400913594478636(k=5) 0.29403 0.31988
features and location feature)

one-hot encoding(categorical 0.3190769736738338(k=5) 0.30186 0.34684
features)+frequency

encoding(location feature)

frequency encoding(categorical 0.3293012906330455(k=13) 0.29600 0.33790
features)+one-hot
encoding(location feature)

42

32 A1

116 118

120 122

124

Figure 2; k-means clustering of customer's rersidence location, k=13

Gender Age Married

. - Device
Online Online .

. Protection

Security Backup Plan
Total Long

. Total No

Distance Revenue Offer
Charges

training:

Avg

Numb Monthl Avg

Number of Satisfaction Referred UMBeTr fenure in Phone oEony Multiple Internet Monthly

Dependents Score aFriend B Months Service . 9 Lines Service GB

eferrals Distance - o

Pren.}_l:cmh Streaming Streaming Streaming Unlimited Paperless Monthly Total Total Total %;;:
Movies Music Data Billing Charge Charges Refunds

Support Charges
. Month- . .

Offer Offer Offer Offer Offer Cable DSL Fiber No to- One Two Bank Credit Mailed 001 2

A B C D E Optic Internet Month Year Year Withdrawal Card Check

3 4 6 6 7 8 9 10 11 12

Figure 3: all features readied to be trained

After deciding all preprocessing methods, we can decide C in logistic regression model. The

result is listed below:

C 10-fold cross validation f1 score | public score private score
0.001 0.31234327145586177 0.26407 0.32724
0.01 0.3377813467620546 0.29793 0.33939
0.02 0.3404127998900565 0.29002 0.35276
0.03 0.3413112734679104 0.29738 0.35071
0.04 0.3379492944313618 0.29918 0.35511
0.1 0.3372012612649843 0.30502 0.35235
1 0.33575388754240243 0.30465 0.35114
Permutation Feature importance[6](top 5):
Satisfaction Score Online Security Married Cable

Figure 5: Permutation feature importance

Experiment of MLP(Multi-Layer Perceptron)

We attempt to use MLP to solve this multi-class problem. We design our network through a
series of ablation studies, trying to choose the best or the most reasonable setting possible.
Adam|[8] is used as our optimizer, and Cross Entropy Loss is used to update our network in the
experiments below. All models below are trained with 50 epochs.
Structure of our MLP model

%]

FENS

x2

Raw

X2
G

X3
Features

/ x3 .

r—

\

1A

Cross
Entropy Loss

. \ ‘o Z/S X6
° %20 Z/
X43 X43 A N/ 10 ’
Network Design:
Nerwork Structure | Learning Rate | Batch Size | Imbalance | Public Score | Private Score
Techniques
(43, 43, 43, 43, 6) 0.0005 4 - 0.33232 0.33008
(43, 43, 20, 10, 6) 0.0005 4 - 0.30767 0.32669
(43, 6) 0.0005 4 - 0.29928 0.33471

We've tested server possible network structures, and it turns out (43, 43, 43, 43, 6) with 5 fully
connected layers have the best performance in general. Although the single layer network (43, 6)
has the best f1 score in the private dataset. We believe it’s just pure luck, since private dataset is
just 50% of the public data.

Batch Size:

Nerwork Structure | Learning Rate | Batch Size | Imbalance | Public Score | Private Score
Techniques

(43, 43, 43, 43, 6) 0.0005 4 - 0.33232 0.33008

(43, 43, 43, 43, 6) 0.0005 8 - 0.32739 0.31994

(43, 43, 43, 43, 6) 0.0005 32 - 0.34978 0.30710

Batch size influences network performance greatly. Small batch size allows the network to
update more frequently and randomly, while big batch size lets it update more stable. In this
experiment, we choose to use a smaller batch size in our model, because we believe randomly
updating will help the network tackle the imbalance problem. It allows minor classes to “dominate”
update direction in some lucky draws. We observed this learning behavior by monitoring minor
classes f1 scores respectively.

Deal with Imbalance Dataset:

We used two different techniques to deal with the imbalance dataset in the MLP. First, we used
a uniform sampler[9] to sample training data with high probability if it's in a minor class. Secondly,
we used a weighted loss function[10] to make the network pay more attention to the minor class

loss.

Nerwork Structure

Learning | Ba

Rate

Size

tch

Imbalance Techniques

Public Score

Private Score

(43,43, 43,43,6) | 0.0005 4 - 0.33232 0.33008

(43, 43,43,43,6) | 0.0005 4 Weighted Loss 0.35439 0.38497

(43, 43,43,43,6) | 0.0005 4 Uniform Sampler 0.29749 0.26130

Our experiment results show weighted loss has a positive impact on our model training process.
On the other hand, the uniform sampler doesn’t help our model at all. We think it's because the
uniform sampler changes the data distribution inside a batch, making our network assume the
input data will always be uniform distribution, which is definitely not true.

Visualize Features in MLP

We use TSNE[11] to reduce the dimension of features and print them on 2D plots for the
purpose of visualizing features in the network. As shown below, “No churn” is colored in red, while
“Competitor”, “Dissatisfaction”, “attitude”, “Price”, “Other” are colored in blue, green, purple,
orange, and yellow. As we can see, raw features are inseparable at first; however, after going
through MLP layer by layer, we can see that the same label data points gradually become a
cluster, making them easier to be classified by a simple decision boundary. These visualization

results illustrate the ability to classify that MLP learned from training dataset.

Raw Feature 1st layer output 2nd layer output

Experiment of AdaBoost

Structure of AdaBoost model

Training l:

A4

Weak classifier 1

Weak classifier 2

Weighted Voter —>| Classification Qutcome

Weak classifier K

Design:

The Adaptive Boosting algorithm can combine several weak classifiers with weighted voters, into
a stronger classifier, and hardly needs parameter adjustments. Furthermore, thanks to the python
scikit-learn’s ensemble.AdaBoostClassifier[12], the Adaptive Boosting algorithm can be
conveniently developed, it might be a good choice for a beginner.

Experiments:

n_estimators | base_estimator | Private Public n_estimators | base_estimator | Private Public
Score Score Score Score
50 None 0.30209 0.28602 | 50 Logistic 0.30230 0.27816
Regression
200 None 0.25806 0.29092 | 200 Logistic 0.31661 0.30682
Regression
500 None 0.28181 0.26410 | 500 Logistic 0.32664 0.29255
Regression

The parameters that have been experimented are the n_estimators and the base_estimator,
which are the maximum number of estimators at which terminated, and the boosted ensemble was
built from. If the ‘weak’ classifier base is stronger than default, the result would be better. Moreover,
the maximum number of estimators seems not proportional to the outcome result. It is because if
the estimators are many, the possibility of overfitting might occur. Although the Adaptive Boosting
algorithm also states that it seldom occurs overfitting, if the estimator number is outrageously
increased, the outcome result would probably show the phenomenon of overfitting.

Perm ion F re im n

016

014

012

010

0.08

006

0.04

0.02

000
Satisfaction Score Online Security Number of Dependents 4 Total Charges

Conclusion
Comparison of three different model:

Efficiency: total training time
Scalability: (total training time with doubled data)/(original training time)

Method Efficiency Scalability | interpretability [Overfitting | Number of private
Hyperparam | F1 score
eters

Logistic Good Good Good Hard Few 0.35071
Regression (0.849s) (1.53)

Multi-Layer Bad Middle Bad Easy Many 0.38497
Perceptron (46.18s) (1.73)

AdaBoost Good Good Good Medium Medium 0.32664
(1.32s) (1.14)

In terms of efficiency, logistic regression definitely has the shortest training time, while MLP has
the longest since it needs to update multiple steps. Logistic regression is very easy to understand
and explain, but MLP and AdaBoost are much more sophisticated. MLP is very easy to overfit,
especially when training data is not rich enough, while Logistic regression and AdaBoost are less
likely to happen. Logistic regression has only one hyperparameter to tune, making it the easiest
model to tune up, while MLP and AdaBoost have lots more hyperparameters needed to deal with.
Final selection of models:

Though MLP achieved high score on the private leaderboard, the hyperparameters of MLP are
very hard to tune, and the lack of cross validation caused by long training time makes us hard to
detect overfit. On the contrary, though logistic regression didn’t perform well on the public
leaderboard, cross validation scores give us promising results, and the logistic regression indeed
performs well on private leaderboard. Thus, we decided to choose logistic regression as our final
selection of models.

Pros and Cons of Logistic Regression:
Pros:

Easy to implement

Not easy to overfit

Very few parameters needed to be tuned
Short training time

Cons:

May underfitting

Less model flexibility

Cannot easily achieve high score on test set

Students TR R10942152 E&#J B08502063 BEX B07705055
Workloads MLP Preprocessing, logistic regression AdaBoost
Reference:

[1]https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
[2]https://scikit-learn. org/stable/moduIes/generated/sklearn |mQute Iteratlvelmguter html

[6]https://scikit-learn.or le/modul rmutation_im

[7] Build MLP with pytorch: https://www.itread01.com/content/1542450988.html

[8] Adam Optimizer: https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

[9] Uniform Sampler: https://androidkt.com/deal-with-an-imbalanced-dataset-using-weightedrandomsampler-in-pytorch/
[10] Weighted loss function:

https://discuss.pytorch.org/t/weights-in-weighted-loss-nn-crossentropyloss/69514/3
[11] TSNE: httos //mortis. tech/2019/11/proqram note/664/

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://towardsdatascience.com/all-about-categorical-variable-encoding-305f3361fd02
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/K-means_clustering
https://scikit-learn.org/stable/modules/permutation_importance.html
https://www.itread01.com/content/1542450988.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://androidkt.com/deal-with-an-imbalanced-dataset-using-weightedrandomsampler-in-pytorch/
https://discuss.pytorch.org/t/weights-in-weighted-loss-nn-crossentropyloss/69514/3
https://mortis.tech/2019/11/program_note/664/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html

